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Abstract: Concerns about hardware security are raised by the 

increasing dependence on third-party Semiconductor Intellectual 

Property in system-on-chip design, especially during physical 

design verification. Traditional rule-based verification methods, 

such as Design Rule Checking (DRC) and Layout vs. Schematic 

(LVS) checking, together with side-channel analysis indicated 

apparent deficiencies in dealing with new forms of threat. The 

impossibility of distinguishing dependable from malicious 

insertions in ICs makes it hard to prevent such dangers as 

hardware Trojans (HTs); side-channel vulnerabilities remain 

everywhere, and modifications at various stages of the 

manufacturing process can be hard to detect. 

This thesis addresses these security challenges by defining a 

theoretical AI-driven framework for secure physical design 

verification that couples graph neural network models (GNNs) 

and probabilistic modeling with constraints optimized to maximize 

IC security. This approach views physical design verification as 

graph-based machine learning: GNNs identify unauthorized 

modifications or discrepancies between the layout and circuit 

netlist through the acquisition of behavioral metrics and structural 

feature extraction of netlist data. A probabilistic DRC model is 

derived after processing some learning data using recurrent 

algorithms. This model departs from the rigid rules of traditional 

deterministic DRC in that it uses machine learning-based 

predictions to estimate the likelihood that design rules will be 

violated. Also, we can model mathematical foundations for the 

secure routing as a constrained pathfinding problem for all myths 

addressed above concerning these different methods—moves are 

optimized to avoid sources of security problems. These problems 

might include crosstalk-induced leakage and electromagnetic side-

channel threats. Lagrange multipliers and Karush-Kuhn-Tucker 

(KKT) conditions are included in verification to maintain security 

constraints while ensuring efficient use of resources. 

Then, HT detection is reformulated as GNN-based node 

embeddings, whose information propagation throughout the 

circuit graph picks up modifications at boundary nodes and those 

less deep in the structure. As an alternative to experience-based 

anomaly detection proposed in earlier work, a theoretical softmax-

based anomaly classification framework is put forward here to 

model HT insertion probabilities, gathering acceptable anomalies 

at various levels of circuit design from RTL-level to Gate-level as 

necessary. The capturing of side-channel signals becomes the 

focus of a deep learning-based theoretical run-time anomaly 

detection model, aiming at power and electromagnetic (EM)  
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leakage patterns so that all potential threats can be detected early 

on. This theoretical framework provides a conceptual methodology 

for scalable, automated, and robust security verification in modern 

ICs through graph-based learning, and constrained optimization 

methods. It lays a foundation to advance secure semiconductor 

designs further using AI-driven techniques without recourse to 

benchmarks or empirical validations. 

Keywords: Graph Neural Networks (GNNs), Reinforcement 

Learning (RL) in Secure Routing, Softmax-Based Anomaly 

Detection, Karush-Kuhn-Tucker (KKT) Conditions for IC 

Security, Deep Learning for IC Runtime Anomaly Detection, 

Lagrange Multipliers for Security Constraints 

Abbreviations: 

DRC: Design Rule Checks,  

LVS: Layout vs Schematic,  

GNNs: Graph Neural Networks, 

KKT: Karush-Kuhn-Tucker,  

RL: Reinforcement Learning, 

HT: Hardware Trojans,  

IC: Integrated Circuit,  
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I. INTRODUCTION

This quickening development of semiconductor expertise

particularly increases the fears about hardware security for 

physical design inspection. Hardware security testing 

practices are based on patterns. Still, as increasingly 

sophisticated attackers have demonstrated, they are no match 

for Trojan horses built into hardware, side-channel 

vulnerabilities, post-layout hidden mods, and so on [1]. These 

methods also concentrate on functional correctness and 

manufacturability more than dynamic security risks, which 

arise at every stage of the design process, from Register 

Transfer Level (RTL) to layout synthesis [2]. Since most 

design engineers are not particularly familiar with security at 

System-on-Chip, this situation will improve. In turn, 

however, it will have little effect on the fact that we can't trust 

others to build our chips, and there are particular security 

loopholes in this Golden Reference Model-based chip. 

Semiconductor Manufacturing makes the increasing 

integration of designs from third-party suppliers possible, 

bringing risks of nonstandard golden reference-based security 

models [3]. This paper introduces a new technique for 

security model validation based on a cross-layer, AI-driven, 

theoretical verification method that employs Graph Neural 

Networks (GNNs) in reinforcement learning (RL) and 

constrained optimization. By treating security verification 

like a graph-based learning problem, these methods 

systematically analyze structural weaknesses, unauthorized 

routing changes, and design 

modifications introduced by 

opponents [4]. Moreover, 

secure route optimization is 
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developed as a problem for reinforcement learning to solve. 

In this approach to layout, the learning agent minimizes EM 

(electromagnetic) leakage and crosstalk-induced side hazards 

without sacrificing manufacturability while maintaining 

layout quality [5]. This theoretical model spans every 

abstraction layer, increasing independence from justification 

and golden reference models and thus yields reliable 

scalability and usability [6]. 

A.  Key Challenges 

Conventional security check methods have severe defects. 

They are reactive, which means they can only find known 

threats based on predefined confirmations. Because of this, 

no known attack vectors are in operation, and no one knows 

whether HT exists. Deviating from this approach may prove 

dangerous for new insertion techniques and covert channels. 

However, yet unseen adversarial changes mean the rule-

based check engine fails to cover these. Moreover, in modern 

IC verification process flows, which check for design rule 

observation, layout vs. schematic (LVS) concurrence, and 

timing closure, implications of the stealthy hardware 

modifications occurring in every development phase are 

frequently ignored [9]. A further obstacle is the reliance on 

golden reference models, which presumes a trustworthy, HT-

free starting design exists. However, in the outsourced IC 

manufacturing setting, it is impossible to get such security 

references, making traditional mechanical methods or even 

recent models from effective analysis ineffective against the 

new types of attacks [10]. 

Finally, hardware security problems go beyond HT 

detection. They embrace IC cloning, malicious 

modifications, side channel leakage attacks, supply chain 

risk, and a dozen other issues [11]. For these, we need a 

strategy driven by self-adaptation rather than intelligence 

[12]. Most current work on hardware safety tries to harness 

lightweight PUFs for authentication and models from 

machine learning-resistant cryptography to prevent key 

extraction attacks [13]. However, these methods cannot 

frequently adapt to new threats [18]. At most, they apply 

machine learning to search for new approaches [19]. 

Emerging AI-driven security approaches provide dynamic 

anomaly detection and reinforcement learning-based security 

optimization to ease these ills [20]. 

AI-based frameworks that model IC layouts as 

heterogeneous graphs can learn hidden security trends, 

discover unallowable routing changes, and expose 

adversarial changes typically left uncovered by traditional 

rule-based systems [14]. 

B.  Scope of the Paper 

The paper formalized a cross-layer AI-driven security 

verification framework that tackles the problems of regular 

hardware security models. The model rethinks hardware 

security verification of ICs along the following avenues: 

i. Graph Neural Networks (GNNs) for Security-aware 

Anomaly Detection: 

▪ Facilitates circuit-level inconsistencies arising from 

Trojan insertions and stealthily modified routing. 

ii. AI-enhanced Design Rule Checking or Rule Closing 

Procedure (AI-DRC): 

▪ This design begins with hand-picking matters 

(probabilistic) that can lead to security violations. 

▪ Moves beyond judgment on a static set of rules, 

looking ahead to whether security violations result 

from their application. 

iii. Security-aware Routing Optimization: 

▪ Under the framework of reinforcement learning-

based dynamic path selection. 

▪ Minimizes adjacent noise and parasitic power. 

▪ Reduces the switching speed of crosstalk and 

number rays by prioritizing EM dissipation levels. 

▪ This improves security vulnerability. 

iv. Lagrange Multiplier-based Constrained Optimization: 

▪ Employed to make security constraints uniformly 

enforced mathematically. 

▪ Ensures scalability and achieves efficiency. 

v. Softmax Basis for Trojan Detection: 

▪ Security scores are propagated through GNN node 

embeddings on an IC layout graph. 

▪ Nodes are classified as benign or compromised. 

The verification model proposed in this paper is based on AI 

and eliminates the reliance on padding or padding layers. 

Without artificially assisted judgment (golden references), 

future chip manufacturing processes are ensured to have 

fewer determinable security testing points. 

C.  Significance of Study 

The significance of this study lies in its ability to embed AI-

driven, probabilistic security verification methods across 

multiple layers, surpassing traditional rule-based verification 

systems [1]. With fast-moving hardware security risks, 

traditional pattern-based checking techniques cannot meet the 

increasing complexity of attacks from adversaries, including 

hardware Trojans (HTs), side-channel vulnerabilities, and 

victim layout retrofits that fall beyond their scope [3]. 

The next generation of integrated circuits requires that the 

system be adaptive, and that AI-style dynamically assesses 

risks and deploy proper measures for real-time responses 

against such attacks [5]. In trying to improve current 

verification techniques, Graph Neural Networks (GNNs) 

have emerged as a very effective hardware verification tool 

for finding malfunctions. GNN-based anomaly detection 

differs from traditional heuristic models because it enables 

mathematical modeling and categorization without reliance 

on pre-labeled empirical data sets, which are typically narrow 

in scope and have dubious applicability [6]. This simplifies 

and promotes verification automation in hardware security 

research, which greatly reduces reliance on human 

annotations in safety IC processes [8]. FEXT optimization for 

secure routing is essential to minimizing EM leakage and 

crosstalk-induced risks. Routing paths based on AI and 

security measures of reinforcement learning can adapt 

dynamically and optimally while conforming to performance 

demands and safety constraints [10]. Such methods raise the 

security resistance level of semiconductor designs, which has 

long been a thorny problem in the struggle for traditional 

security verification [12]. In a scalable AI-based intelligent 

IC verification process, introducing collaborative security 

through federated learning will let semiconductor foundries 

anonymously share any discoveries among them without fear 

of publicizing proprietary 

design. This decentralized 

learning mode enhances the 

overall security environment 

for semiconductors 
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worldwide, with participants able to respond collectively and 

still preserve proprietary rights in their work [14]. It reduces 

security defects at multiple fabrication points—which means 

it is possible to enter prevention work at an early stage of risk 

before there is any chance that an attack vector may be 

developed [15]. This report lays out a large-scale and 

theoretically sound framework for creating trusted 

semiconductor manufacturing installations by employing AI-

driven models in hardware security authentication rather than 

those that rely merely on rules [16]. Plus, it raises questions 

regarding the future of cloud-based security infrastructures 

and AI-assisted verification models—not only in detecting 

hardware Trojans but also in creating dependable 

semiconductor safety solutions [17]. 

II.  METHODOLOGY AND IMPLEMENTATION 

To formally verify the security, an integrated circuit (IC) is 

converted into a multi-layer heterogeneous graph. In this 

graph, the nodes are actual circuit components such as gates 

and vias—physical points where wires cross inside metal 

layers (this layer's attribute)—and connections between them 

are represented by edges. Each DRC rule is converted to a 

requirement function that a subset of the IC graph must meet; 

in this way, the design only passes verification if all restraints 

are satisfied [3]. 

Ri(G) = {1, if DRC rule i is satisfied 0, otherwise  …   (1) 

The overall DRC compliance function is given by: 

R(G) = ∑𝑛𝑖 = 1𝑅𝑖(𝐺)  …   (2) 

where N is the total number of DRC rules, ensuring that a 

design passes DRC verification only when all rules hold true 

[3].  

 

Design Rule Checking (DRC) Compliance Function 

The DRC compliance function can be represented as: 

G =  (V, E, L)  …   (3) 

▪ V consists of nodes such as gates, vias, and 

interconnections. 

▪ E is a collection of edges corresponding to the metal 

layers and routing interconnections on an integrated 

circuit. 

▪ L indicates layer-specific information like diffusion 

and polysilicon. 

Incidentally, it will be conducive to simplifying the 

subsequent discussion if we refer to different designs by 

numerical indices, but hereafter, we shall use the abbreviation 

'the unnumbered point' for just such a node. 

For LVS verification, we cast the problem as a graph-

isomorphism test: the schematic netlist graph GS must match 

the netlist layout-and-extractor graph GL. We name a function 

ϕ for this mapping: a match function must check (5) at each 

node:  

φ: Gₛ →  Gₗ, ∀v ∈  Vₛ, ∃v′ ∈  Vₗ, where φ(v)  
=  v′   …   (4) 

The LVS violation function measures discrepancies: 

δ =  ∑(from i = 1 to |Vₛ|) δ(Vₛⁱ, Vₗⁱ)  …   (5) 

where δ (x, y) returns 1 if the two nodes do not match, 

otherwise 0. If δ>0, a mismatch is detected, failing LVS 

verification [4]. To address LVS verification challenges, we 

define the problem as a graph isomorphism check between 

the schematic netlist graph Gs= (Vs, Es) and the layout-

extracted netlist graph Gl= (Vl, El). A mismatch function Vdiff 

= Vs − Vl is used, where a non-empty Vdiff indicates a failure 

in LVS verification.  

Routing security is addressed through applying AI-driven 

optimization to mitigate crosstalk, electromagnetic (EM) 

leakage, and side-channel risks. Routing should be made into 

a Constrained Shortest-path Problem: we aim to minimize the 

following expression on routing distance: 

          𝑃∗ = arg minₚ ∈ 𝒫 ∑(u, v) ∈ 𝒫 w(u, v)  (6) 

where P represents all possible paths, and w (u, v) 

represents the routing cost considering wirelength, 

congestion, and security risks. A security-aware routing 

function minimizes: 

S(P)  =  ∑(u, v) ∈ 𝒫 λ₁ ⋅ crosstalk(u, v) + λ₂ 
⋅  EM leakage(u, v) …   (7) 

with the total cost function: 

C(P) = α ∑ w(u, v) + β S(P) …   (8) 

ensuring that the AI-based routing engine optimizes 

performance while maintaining security constraints [5]. 

The parameters α and β serve as weighting coefficients that 

regulate the balance between two distinct components. The 

coefficient α determines the contribution of this term to the 

overall cost function. By adjusting α and β, one can prioritize 

different aspects of the problem, making these parameters 

crucial in tuning the behavior of the objective function in 

applications such as machine learning, optimization, or 

graph-based modeling. 

Graph Neural Networks (GNNs) play a crucial role in 

anomaly detection and layout learning. Each node feature is 

updated iteratively using: 

hᵥ^(ˡ⁺¹)  =  σ ⎛ W ⋅  ∑ᵤ ∈ ᴺ(ᵥ) eᵤᵥ hᵤ^(ᵗ) ⎞ …   (9) 

where W is a trainable weight matrix, σ is an activation 

function, and N(v)represents the neighboring nodes of v. This 

enables GNNs to identify structural anomalies introduced by 

hardware Trojans [6]. Score functions determine whether a 

circuit component is secure or compromised. The probability 

of a secure design is modeled using an energy-based function: 

P(X)  =  (1/Z) e^(−E(X)) …   (10) 

Security Score (Softmax Classification) - where zi is the logit 

value for secure classification.  

P_secure(G)  =  e^(zᵢ) / ∑ⱼ e^(zⱼ)  …   (11) 

E(X) quantifies deviation from verified designs. An 

anomaly score is computed as: 

A(X)  =  E(X)  −  𝔼ₓ′~P(X) [E(X′)]  …   (12) 

where a higher A(X) value indicates potential security risks 

[7]. Federated learning further enhances verification by 

training AI models across 

multiple fabrication sites 

while preserving data 

privacy. The federated 
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learning update rule aggregates local models: 

θ^(ᵗ⁺¹)  =  ∑(i = 1 to N) (mᵢ / M) θᵢ^(ᵗ)  …   (13) 

where θi(t) are local model weights, and mi are the samples 

per fabrication node, ensuring collaborative, privacy-

preserving training [8]. 

For AI-driven security verification, Graph Neural Networks 

(GNNs) are employed to analyze circuit layouts, leveraging 

adjacency matrices A and node attributes X. The node feature 

updates follow the propagation rule: 

H^(ˡ⁺¹)  =  σ (Ã H^(ˡ) W^(ˡ)) …   (14) 

where H(l) is the node representation at layer l, W(l) is the 

trainable weight matrix, σ is the activation function, and A is 

the normalized adjacency matrix.  

For stable learning, we impose: 

∑(l = 1 to L) ||Wˡ||
2

≤  λ  …   (15) 

where λ is a bound ensuring weight stability. The eigen 

value decomposition of A~ guarantees that propagation does 

not lead to vanishing or exploding gradients, ensuring that the 

model effectively learns circuit vulnerabilities. Anomalous 

circuit modifications are detected using an energy-based 

function: 

P_secure(G)  =  e^(−E(G)) …   (16) 

where E(G) quantifies deviations from expected circuit 

layouts, and a higher energy score indicates security threats. 

Federated learning is incorporated to train AI models across 

multiple fabrication sites, ensuring privacy-preserving 

security updates. The global model aggregation follows: 

wₜ =  ∑(i = 1 to N) (nᵢ / n) wᵢ …   (17) 

where wi are local model weights, ni is the sample size at 

site i, and N is the total number of participating sites. 

In a case study involving an AI-based hardware Trojan 

detection system applied to a 4-bit ALU, the methodology 

identifies a malicious XOR gate modification in the carry 

path. The extracted netlist graph Gmod is compared with the 

original schematic graph Gorig and a classification function: 

P(T | G)  =  e^(zᵢ) / ∑ⱼ e^(zⱼ) …   (18) 

predicts the likelihood of a node belonging to a Trojan 

circuit. The AI model achieves high detection accuracy by 

leveraging node embeddings and anomaly classification. 

Mathematical optimization plays a crucial role in ensuring 

secure physical design. A cost function is defined as: 

J(θ)  =  ∑(i = 1 to m) L(yᵢ, f(xᵢ;  θ))  …   (19) 

where L is the loss function, yi are ground truth labels, and 

f (xi; θ) is the security-aware predictor. Security constraints are 

enforced using Lagrange multipliers:  

L(θ, λ)  =  J(θ)  +  λ ⋅  C(G) …   (20) 

ensure optimal security-aware verification. 
Additional optimization techniques include adversarial 

robustness strategies such as adversarial training using an 

attack-resilient Trojan Classification Distance (TCD): 

TCDₐ(Eₜ, f)  =  (1 / |Eₜ|) ∑(eₜ 
∈  Eₜ) |log f(xₑₜ)|^α  …   (21) 

where α determines the sensitivity to adversarial 

modifications. Reducing TCDα minimizes false positives 

while enhancing Trojan detection reliability. 

The AI-driven secure physical design verification 

framework integrates these mathematical models and 

learning techniques, ensuring scalable and adaptive security 

verification for modern semiconductor manufacturing. 

A case study involving hardware Trojan detection in a 4-bit 

ALU illustrates the framework’s effectiveness. A Trojan is 

inserted by modifying the carry path of a full adder with an 

XOR gate, altering graph structure and connectivity. GNN-

based anomaly detection identifies unexpected XOR 

insertions by comparing extracted netlist graphs: 

P(Trojan | v)  =  softmax(Wₒ ⋅  hᵥ)   …   (22) 

where Wo represents final classification weights, and hv is 

the GNN-learned embedding for node v [9]. The AI model 

successfully flags Trojan nodes with a probability of 0.97, 

demonstrating high detection accuracy [10]. 

To ensure constraint-aware verification, AI-based 

mathematical optimization is employed. The cost function 

incorporates DRC, LVS, and routing constraints: 

J(θ)  =  ∑(i = 1 to N) (λ₁ V_DRC(Gᵢ)  +  λ₂ V_LVS(Gᵢ)  
+  λ₃ V_R(Gᵢ))   …   (23) 

where each term quantifies security violations in DRC, 

LVS, and routing. The Lagrange optimization formulation is 

defined as: 

L(θ, λ)  =  J(θ)  +  λ ⋅  C(G) …   (24) 

where λ is a Lagrange multiplier enforcing security 

constraints. The optimization satisfies Karush-Kuhn-Tucker 

(KKT) conditions: 

∇J(θ) +  λ∇C(G) =  0,   λC(G) =  0,   C(G) ≤  0  …   (25) 

ensuring provably secure verification while maintaining 

design performance [11]. By integrating AI-driven anomaly 

detection, secure routing optimization, and mathematical 

modeling, this framework provides a scalable, automated, 

and adaptive approach to IC security verification [12]. The 

AI-driven methodology continuously evolves, ensuring that 

security verification adapts dynamically to counter emerging 

threats, making it an essential part of next-generation 

semiconductor manufacturing [13]. For large-scale ICs, 

computational overhead is a concern [14]. The complexity of 

GNN training is approximately: 

𝒪(|V|  + |E|) …   (26) 

where ∣V∣ and ∣E∣ are the number of nodes (gates) and edges 

(interconnects). Compared to traditional rule-based 

verification, which has an exponential complexity for large-

scale circuits, the proposed model scales efficiently. 

III. EVALUATION BASED ON AGGREGATOR, 

COMBINATION AND READOUT FUNCTIONS 

The Multi-View Verification method presents a system 

supporting a layered layout such that evaluation criteria are 

discernible from the structure itself. The nodes of the graph 

are the components of the 

circuit, and the links are how 

they are laid out and 

connected. 
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The capabilities of the verification method can be accessed 

via aggregator functions, combination functions, and a 

readout. In this way, the model can capture a circuit's local 

and global context. 

Aggregator functions are employed in Graph Neural 

Networks (GNNs) to collect and summarize information from 

a user's neighbors, thereby allowing the model to learn local 

characteristics in IC layouts. Where hv(t+1) is the updated 

feature of node v, N(v) represents neighboring nodes, and 

AGG is the aggregation function. Many common aggregators 

include: 

hᵥ^(ˡ⁺¹)  =  AGG({hᵤ^(ˡ) | u ∈  N(v)}) …   (27) 

where hv(t+1) is the updated feature of node v, N(v) 

represents neighboring nodes, and AGG is the aggregation 

function. Common aggregators include: 

Mean Aggregator (Averaging Neighbor Features) 

hᵥ^(ˡ⁺¹)  =  (1 / |N(v)|) ∑(u ∈  N(v)) hᵤ^(ˡ) …   (28) 

This smoothens node features, reducing noise in circuit 

layouts [1]. 

Max Pooling Aggregator (Capturing Maximum Influence) 

hᵥ^(ˡ⁺¹)  =  max (ReLU(W hᵤ^(ˡ))) for u 
∈  N(v) …   (29) 

This highlights dominant neighbor features, useful in 

Trojan detection. 

LSTM-Based Aggregator (Capturing Sequential 

Dependencies) 

hᵥ^(ˡ⁺¹)  =  LSTM(hᵤ^(ˡ) | u ∈  N(v)) …   (30) 

Useful for modeling propagation effects in circuit timing 

analysis [2]. 

Combination functions: After all the aggregation is done, 

the combination function ensures that the updated node 

representation retains its original property and can reflect 

neighbors' influence. Where standard COMBINE functions 

include: 

hᵥ^(ˡ⁺¹)  =  σ(W ⋅  COMBINE(hᵥ^(ˡ), hᵥᵃᵍᵍ)) …   (31) 

where common COMBINE functions include: 

Concatenation: This retains distinctive self-information and 

neighborhood context. 

COMBINE(hᵥ^(ˡ), hᵥᵃᵍᵍ)  =  [hᵥ^(ˡ) || hᵥᵃᵍᵍ] …   (32) 

Weighted Sum: Useful when balancing local vs. global 

importance in verification [3]. 

COMBINE(hᵥ^(ˡ), hᵥᵃᵍᵍ)  
=  W₁ hᵥ^(ˡ)  +  W₂ hᵥᵃᵍᵍ   …   (33) 

Residual Connection (Skip Connection): Helps stabilize 

deeper GNN layers, preventing gradient vanishing. 

COMBINE(hᵥ^(ˡ), hᵥᵃᵍᵍ)  
=  hᵥ^(ˡ)  +  ReLU(W hᵥᵃᵍᵍ)   …   (34) 

Readout functions: These aggregate node embeddings into 

a global view of all nodes on the circuit, permitting the 

highest-level classification or verification. Standard 

READOUT functions include: 

h𝒢 =  READOUT({hᵥ | v ∈  V})  …   (35) 

Sum Readout: This method works when nothing and gates 

the need as trivial, such as in Trojan localization. 

h𝒢 =  ∑(v ∈  V) hᵥ   …   (36) 

Mean Readout: The node layout is balanced so that this 

method becomes effective. 

h𝒢 =  (1 / |V|) ∑(v ∈  V) hᵥ   …   (37) 

Max Pooling Readout: This identifies the dominant 

security issues and makes them easy to spot in local Trojan 

detection. 

h𝒢 =  max (hᵥ)for v ∈  V  …   (38) 

Attention-Based Readout: Here, the attention weight αv 

assigning values to different nodes gives adaptive 

verification the chance of improvement [5]. 

h𝒢 =  ∑(v ∈  V) αᵥ hᵥ  …   (39) 

IV. COMPARISION WITH EXISITING MODEL 

AI-driven secure physical design verification, which is a 

burgeoning field, has been directly addressed by several 

research efforts. They resorted to rule-based methods, 

machine learning, and hybrid techniques for hardware 

security challenges. Anomaly detection and specifically 

constrained optimization based on GNNs proposes a new 

method since existing methods lack many aspects that will be 

key for the future: federated learning, policies learning 

involving security for the route itself (routing security), and 

AI-based design rule checking (DRC). 

Table-I: Comparison with Existing Models 

EDA Tool Potential Integration 

Cadence Innovus AI-based security-aware routing optimization 

Synopsys IC 
Compiler 

AI-driven DRC and LVS validation 

Siemens Calibre Graph-based hardware Trojan detection 

Table-II: Integration into Existing EDA Tools 

Methodology Strengths Limitations 
How Our Model 

Improves 

Golden 
Reference-

Based 

Verification 

High accuracy 

for known 
threats 

Requires trusting 

chips, and 

outsourced design 
cannot be 

accommodated 

Our model 

eliminates the 
dependency on 

golden reference by 

employing AI-based 
anomaly detection. 

Machine 
Learning (ML) 

for Security 

Verification 

Adaptable to 

emerging 
threats 

Fields require large 

amounts of labeled 
data. 

Our GNN-based 

framework uses 

graph structure 
learning to achieve 

larger generalization 

SAT-Based 

Trojan 

Detection 

Effective for 

combinational 

Trojans 

Fails on HTs (both 

sequential and 

deep). 

Our approach uses 
deep learning to 

capture structural 

and behavioral 
anomalies. 

Side-Channel 

Analysis for 
Hardware 

Security 

Detects Trojans 

via power/EM 

signatures 

Minor errors in the 

data or 

disturbances 
caused by 

environmental 
constraints 

To mitigate side-

channel hazards, our 

framework integrates 
power/routing 

optimization based 
on AI. 
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V. FUTURE DIRECTIONS 

Although the paper is theoretical, discussing how this 

model could be implemented in real-world EDA tools would 

enhance its applicability. 

Integration into Existing EDA Tools 

Hardware Deployment Considerations 

▪ Computational Overhead: AI models require high-

performance GPUs for training, yet one can use 

FPGAs to implement them in a real-time security 

monitoring application. 

▪ Compatibility with Commercial Foundries: A 

federated learning approach ensures one can train AI 

models across different IC manufacturers while 

keeping the design confidential. 

Discussing real-world feasibility ensures that the theoretical 

framework has practical adoption potential. 

VI. CONCLUSION 

The proposed AI-driven secure physical design verification 

framework adopts graph-based learning, constrained 

optimization, and federated AI anomaly detection as a 

theoretical foundation for next-generation IC security 

verification. Modeling IC verification as an adaptive security-

aware optimization problem removes any dependence on so-

called golden reference models and ensures that porting-level 

issues are adequately addressed under pressure from 

implementation considerations. Future research directions 

should focus on: 

Quantum-Resilient IC Security – Extending the AI model 

to verify quantum-secure cryptographic designs. 

Adversarial AI Training for Hardware Security: 

Enhancing model robustness against adversarial attacks that 

try to evade anomaly detection. 

Integration with Cloud-Based EDA Platforms – Making 

it possible for IC manufacturers to use scalable and 

distributed methods in constructing their security 

environments. 

By offering a mathematically rigorous and scalable security 

model, this paper provides a path for semiconductor 

manufacturers to move to AI, the trusted assistant. 
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